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W (E) - T;p (to) i l,AP (Af=t-ft,) (3.8) 
n=‘o 

This series converges rapidly for permissible trajectories by virtue of the boundedness 
of W(t). 

Practically, with many real trajectories it is sufficient to retain three terms only, 

IF = ~(W, f &A$ f IBW), W(Q) = (j@ + fl&) + **r f is&s) % (3.9) 

Computing the coefficients Z,, I,, Z4 of this polynomial, we obtain 

Integrating Eq. (1.4) with allowance for (3.9). we obtain the apparent’velocity expend- 

ed on contrO1* v(T) = TW(t,)[z, + Zr(r&T - to) + tz(‘/sTs - t,T + Q] (3.10) 

The permissibility of a chosen trajectory of craft motion with fixed ends can be veri- 
fied by substituting (3.6). (3. IO) into inequalities (1. 5}. 
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The system of third-order differential equations describing the motion of a single-axis 

gyro stabilizer with a floating integrating gyro is investigated. The stabilizer motor is 

controlled by means of a contact device with a dead zone 6. It is shown that for a suf- 

ficiently small 6 the system has a closed trajectory corresponding to the autooscillations 
of the gyro stabilizer. The domain of immersion of the closed trajectory in the phase 
space is specified. 

The autooscillations of gyro stabilizers were investigated in p-41. The author of 
p, Z] analyzed the motion of a gyro stabilizer En the case of a relay-type stabilizer 
motor control, He determined the parameters and inv.estigated the stability of the peri- 
odic motion by the method of point transformations. The author of [3, 41 treated the 
problem by the harmonic linearization method of E. P. Popov in conjunction with elec- 
tronic modelling. The primary emphasis in these studies was on computing the periodic 
motion. In the theory of gyroscopic instruments empl~ing aut~ciliato~ operating 
modes it is especially important to investigate the conditions of existence of closed tra- 
jectories of the differential equations of gyro system motion, to prove the existence of 
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these trajectories. and to localize them. The present paper deals with these matters in 
the case of a single-axis gyro stabilizer with a float-type integrator. 

1, Let us suppose that the gyro stabilizer is mounted on a fixed base. We neglect the 
elastic pliability of the structural elementsofthe gyro stabilizer and the dry friction for- 

ces in the suspension supports and assume that the stabilizer is driven by a two-phase 

induction motor. The motor is controlled by means of a contact device with a dead zone 

6. Under these assumptions the differential equations of the gyro stabilizer can be writ- 
ten as 

A;j,+H6==-M((6)--& B&_ H11; = - n16 (1.1) 

M(6) = M, sign 6 (101 > S), M(6) = 0 (I\‘)] < 6) 

Here cp is the angle of rotation of the outer gimbal, 6 is the angle of rotation of the 
housing, A is the sum of moments of the moving parts of the gyro stabilizer which are 
applied to the stabilizer axis, B is the sum of moments of inertia of the housing and 

gyro wheel relative to the housing axis, Ii is the kinetic moment of the gyroscope, n,, 
n2 are the damping factors, and M(S) is the moment generated by the stabilizer motor. 

Let us introduce the notation 

721 
VI = - B ’ 

and the new variables 

Equations (1.1) can be rewritten as 

E’ = - Y& - h,ll - 1(C), 11’ = h,k - VlV, 5’ = 11 (1.2) 

t(5) = fo sign 5 (ICI > 6), f(5) = 0 (151 < 6) 

The parameters of gyro stabilizers with float-type gyroscopes are usually such that 
the condition 

(1 ..3) 

holds. 
We propose to prove the existence of a closed trajectory of system (1. ‘2) and to deter- 

mine the domain containing the closed trajectory. 

2, The transformation 

converts system (1. ‘2) into 
x’ = - q(z), y’ = I - ay - 1J2, z’ = y 

where 
a = v1 + vz, B = hJ, + %%, cpb) = Mz) 

Let us take (a. ‘L) as our initial system, stipulating that 

a>o, B>O q(z) = ‘p. signz (lzl > 61, 90 = MO, CPM 

From now on we assume the validity of the inequality 

aa > 48 

which is equivalent to (1.3). Next, we inmoduce the constant 

p=Z=/,(a+ VCG-4p), ‘[J c1 < L” < u 

= 

(2.1) 

(2.2) 

0 (lzl < 6‘) 

(2.3) 

Let us consider the conical surface Kl (Fig. 1) formed by the following planes : 
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We denote the surface symmetric to KL with respect lo the origin by KS Let S be the 
complement of the domains bounded by K1 and RI to the entire space, and let A be the 

intersection of S with the plane z= 0 for x > 0. 
The domain R is defined by the inequalities 

0 d Y < p-iz, z > 0. 
Let L+(p, t) denote a positive semitrajectory 

of system (2.2) which passes through the point 

P for t = 0. 
Lemma 2.1. If p E S,then L+ @, t) E S. 
To prove this we need merely show that the 

trajectories of system (2.2) cannot intersect the 
surfaces K1 and Ke within the domains bounded 

by these surfaces. In the case of K1 this can be 

inferred from the following relations, where 
[~‘l(~.~) denotes the derivative of system (2.2) 

Fig. 1 with respect to t : 

[l&s, = x - bz (0 g fiz “$ 2, y = 0) 

[z’l(,,) = Y < 0 (Y Q 0) 

Letu, = z - pY - @z.Then 

[U&a) = - cp(4 - v + Y w - B) + PBZ 

For u1 = 0, z > 0 we have 

[Ui&d.zj = - cp(z) - Y(P - P + B) = - q(z) Q 0 

The argument for the surface K, is similar. The lemma has been proved. 
Le m m a 2.2. There exists a bounded domain QcS such that if P E Q, then 

L+(P, :I c Q. 
The proof consists in the construction of the surface r bounding the domain Q. Let 

us consider the plane u 
2 

= z 
- ‘1, ay - j3z = - c, c>O (2.4) 

The plane (2.4) intersects the plane LL~ = 0 along the straight line along which Y = 

= - c(P - ‘1, a)-’ and the plane z = 0 along the straight line I - 1/4 ay = - c. 

Let us show that 

[z+‘](s_s) > 0 in the domain uz = - c, Iyl 6 c(u - VAa)-i (2.5) 

if c is sufficiently large. For us = - c we have 

[%‘I - - cpb) + l/e + (%6 aa - B)y (ri.2) - 
If fi < z/i6 as, then (2,5) is valid for 

c > cl = (p0(4u - a) (48 + ua - a2)-l 

For j3 > “/lea2 inequality (2. 5) is fulfilled if 

c > c2 = ‘p0(4p - a) (V2a2 + pa - 48)-’ 

Taking c > c1 or c > c2 according to the sign of fi - 8/1ea2, we find that the part of 
the plane uz = - c for which lY[ < c(p - 1/4a)-1, z > 0 is intersected by the trajectories 
of system (2.2) in the direction of increasing 5. 
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We note, moreover, that since p < a,it follows that [y’](,.,) < 0 in the domain - 

Ul<O> 0. 

In similar fashion we can show that 

M(s.s) < 0, if u.2 = c, ly] < c(p - i/&-r 

[Y’l~,.,~ > 0 for UI > 0, Y < 0 

We form the surface I’ out of the planes 

Uz = ‘5 c, Y = T c(p - 1/&q-1 

in the indicated domains, adding to them the planes 
I = - pc(p - r/,c$i, z > 0 and z = pc(p - l/&-l, z a o 

In order to make J? closed we must add the triangle Z’i in the plane z = 0 bounded 
by the negative semiaxis and the straight lines I = - p(p - 1f4a)-r, z - II4 ay = - C, 

the triangle Tz symmetric to T,, and the corresponding elements of the surfaces K, and 

Kz. 
The above analysis implies that the surface l? is intersected by the trajectories of 

system (2.2) inside the domain Q bounded by r, so that Q has the property required by 

Lemma 2.2. The lemma has been proved. 
Theorem. If condition (2.3) is fulfilled, the system (2.2) has a closed trajectory 

immersed in Q provided that 6 is sufficiently small. 

Proof. Let us denote by R, that part of the sector R which belongs to Q and for 
which z >/ fizO, where z0 > 6 is a certain constant defined below. 

Let us consider the straight line 1 in the plane zz . This line is defined by equation 

Z-2+z=-i,h pzo(zo+6), y=o (h = z0 - 6 > 0) 

Next, let us construct the plane P with the equation 
2UZfJ 

u3 
=x-h y- 

F (2 - z, - 6) = 0 

which passes through the straight line I and the point A@z,,, @/a, 6) lying in the plane 
y-=x-ay-fiz=O. 

In the plane P we have 

[“3’l(2.2) 
F_-rp(z)-~ y+ u (zo/; 6, @z. - z) 

Setting h = k8, we have z. = (k + 1)6, and (2.6) implies that 

I’L&.*) < 0 (z > 6, I 5 I < B&J 
in the plane P, provided that the inequality 

6 < $$ (k + 1)-l (k + 2)-z 
is valid. 

(2.6) 

(2.7) 

Geometrically this means that any trajectory which passes through a point lying under 

the plane P (Fig. 2) for / I 1 < ~Jzo, .Z > 6 intersects the plane y = 0 in the domain 

ZPzo 
2c-X z+zo+s,, z>& r<,<zo 

with increasing time. 
We shall show that a trajectory passing through the point B (flzo, 0, 0) has this property. 

System (2.2) is integrable in the domain 0 Q z < 6 because 
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s(t)=pz& &$ [w+P(Z-QZO)I 
in this domain. 

(2.3) 

Taking account of the initial values, we obtain 

u = z - 20, m=all/z A = a2 - 46 

Let y = YO for 2 = 6. This enables us to determine y, from the equation 

yo” + uhyo + Pha = PO” [ 
Yo@fT/%--43 x 

Yo @ - 1/K) - 243 1 
Let US require that y, > fib / a. This inequality is valid if 

Fig. 2 

From now on we assume that k satisfies 

inequality (2.9). The trajectory in question 

then lies above the plane P for z = 6. The 
theorem has been proved. 

7 
Now let us consider an arbitrary trajectory 

passing through RI. By virtue of (2.8) the 
derivative dy / dz increases together with ~0, 
so that y, > fib / a as before. 

Moreover, 

[Y’j(,.,) = - W - BY < 0 

(Y’ = 0, Y > 0, z > 6) 

The trajectories in these domains can inter- 
sect the plane y’= 0 only in the direction 

of decreasing y’, or, equivalently, of decreasing z. Their points of intersection with the 
plane y = 0 therefore lie 

in the domain 

2!3zo 
X<<- 

PO (zo + 6) 
h ’ 22.8 (x d P4 

in the domain 
z d Bz (5 > B%) 

Now let us consider the plane 
2Pzo Ud=l- 7 (z -%J--6)=O 

in the domain Q for y < 0, z > 6 . This plane passes through the straight line 1. If 

ug = 0, then 

I”4 j(2.2) 
2P% 

=-W)-~y<O (2.10) 

in the domain Q for z > 0, IJ < 0 , provided that 

hrpo 
Iv I<zgzo= 

kcpo 
ZP(k+i) 

But in the domain Q in the plane uq = 0 we have 
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Hence, inequality (2.10) is valid if 

fcPrp0 
6 cqfp- (k + lrl (k f 2rx (2.11) 

The derivative x’ = 0 for 0 < a < &, and the straight line I has the abscissa - j&, 

for z = S . Hence, the trajectories of system (2.2) which originate in the domain RI 

intersect the domain Rs of the plane my (which is symmetric to R,) with increasing 
time. Later on the trajectories of system (2.2) again intersect R1, thereby defining the 

homeomorphism T with the property T(R,) c R, on R,. Hence, T has a fixed point on 

RI through which the closed trajectory of system (2.2) immersed in the domain Q must 
pass. The theorem has been proved. 

Note Expressions (2.7),(2.9) and (2.11) imply that it is advisable to set k = l/z. 

Let us consider a numerical example. Let A = 1000 g cm s2, B = 3.5 g cm s2, N = 
=1OOOgcms, n,=400gcms,n,=2800gcms,M,=5000gcm,andk=)I~. 

A periodic motion exists for S < 5.9 angular minutes. 
In conclusion we note that the above theorem remains valid in the case where the 

moment &f(e) of the stabilizer motor has a piecewise-linear characteristic with satura- 

tion, i. e. in the case 
W = ‘PO (I s I > 61, q(z) = ‘po6-lz (I 2 I < 8 

In fact, the proofs of Lemmas 2.1 and 2.2 remain unchanged. Moreover, let us set 

6 < ‘p&B (2.12) 

Fulfillment of inequality (2.12) implies that the characteristic equation of the linear 

system (for 1 z 1 6 6) has a single negative root p1 and two complex roots with a positive 
real part. The direction of arrival of the trajectories at the origin as t -+ 00 is defined 

by the vector ((~~16, -p 1a, - pr), i.e. it lies inside the cones K1 and Ks. It remains for 
us to note that for 1 z ( < 6 the right circular cylinders whose axis coincides with the 

indicated direction intersect the trajectories as they expand. 
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